研究报告
储能应用突破:中科院金属所破高性能纳米磷酸铁锂难题
2018-11-27

最近,中国科学院金属研究所研究员王晓辉课题组与南京航空航天大学教授朱孔军合作,在深入理解LaMer形核生长机制的基础上,通过减小形核窗口时间来增大形核速率,采用微波水热合成法在纯水的合成环境中制备出纳米LiFePO4。同时利用沉淀剂将滤液中最有价值的LiOH回收再利用,锂源的有效利用率超过了90%,大幅度降低了生产成本。由该方法制备的纳米磷酸铁锂具有迄今为止最高的产率(1.3mol/L),且表现出优良的电化学性能,在0.1C倍率下放电比容量为167mAhg-1,3C倍率下充/放电循环1000次后,仍能保持初始容量的88%,可以满足大规模储能的实际应用。该工作率先实现了高性能纳米LiFePO4在纯水的合成环境中的绿色高效合成,将有力推动其规模化生产。相关结果发表在近日出版的《绿色化学》(Green Chemistry, 2018,20, 5215-5223)杂志上。

储能应用突破:中科院金属所破高性能纳米磷酸铁锂难题

图1 经典的LaMer形核和生长机制以及实验结果。(a)经典LaMer机理,颗粒在溶液中成核和生长过程中单体浓度变化的示意图。(b)三个具有高斯分布的形核函数。形核函数的宽度()对应形核时间窗口。(c)微波加热和油浴加热两种加热模式下的原位温度与时间曲线。(d)由两种不同的加热模式制备的LiFePO4沿[100]或[010]方向的尺寸统计。微波加热的尺寸为63nm,而在常规油浴加热的情况下,尺寸为105nm。

储能应用突破:中科院金属所破高性能纳米磷酸铁锂难题

图2 LiFePO4纳米晶水热合成路线及锂回收示意图。以LiOH、FeSO4和H3PO4为原料制备纳米LiFePO4。用Ba(OH)2做沉淀剂与滤液反应,随后进行固液分离,回收LiOH。插图为LiFePO4的TEM照片。

储能应用突破:中科院金属所破高性能纳米磷酸铁锂难题

图3 水热/溶剂热合成方法制备LiFePO4单位体积产率的比较。插图为本工作中合成的LiFePO4的光学照片。

储能应用突破:中科院金属所破高性能纳米磷酸铁锂难题

图4 原始的O-LiFePO4/C和回收的R-LiFePO4/C的电化学性能曲线。(a)O-LiFePO4/C在0.1–10C不同倍率范围内的典型充放电曲线。(b)倍率性能。(c)O-LiFePO4/C和R-LiFePO4/C在3C倍率下的长循环稳定性。3C对应的充电或放电时间为20分钟。

文章来源:中国科学院金属研究所

 
标签:储能技术 , 磷酸铁锂
相关推荐